232 research outputs found

    NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging.

    Get PDF
    X-ray luminescent nanoparticles (NPs), including lanthanide fluorides, have been evaluated for application to deep tissue in vivo molecular imaging using optical tomography. A combination of high material density, higher atomic number and efficient NIR luminescence from compatible lanthanide dopant ions indicates that particles that consist of ALnF4 (A = alkaline, Ln = lanthanide element) may offer a very attractive class of materials for high resolution, deep tissue imaging with X-ray excitation. NaGdF4:Eu3+ NPs produced an X-ray excited luminescence that was among the most efficient of nanomaterials that have been studied thus far. We have systematically studied factors such as (a) the crystal structure that changes the lattice environment of the doped Eu3+ ions within the unit cell; and extrinsic factors such as (b) a gold coating (with attendant biocompatibility) that couples to a plasmonic excitation, and (c) changes in the NPs surface properties via changes in the pH of the suspending medium-all with a significant impact on the X-ray excited luminescence of NaGdF4:Eu3+NPs. The luminescence from an optimally doped hexagonal phase NaGdF4:Eu3+ nanoparticle was 25% more intense compared to that of a cubic structure. We observed evidence of plasmonic reabsorption of midwavelength emission by a gold coating on hexagonal NaGdF4:Eu3+ NPs; fortunately, the NaGdF4:Eu3+ @Au core-shell NPs retained the efficient 5D0→7F4 NIR (692 nm) luminescence. The NaGdF4:Eu3+ NPs exhibited sensitivity to the ambient pH when excited by X-rays, an effect not seen with UV excitation. The sensitivity to the local environment can be understood in terms of the sensitivity of the excitons that are generated by the high energy X-rays (and not by UV photons) to crystal structure and to the surface state of the particles

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Worldwide dietary and lifestyle factors associated with diabetes prevalence and total cholesterol levels: an ecological analysis

    Get PDF
    The worldwide epidemiology of diabetes and hypercholesterolemia is changing rapidly as a result of the diffusion of Westernised nutritional and lifestyle patterns. We conducted an ecological analysis to identify dietary, lifestyle and socio-economic factors associated with global distribution of diabetes prevalence and total cholesterol levels. Country-specific prevalence estimates of diabetes prevalence and total cholesterol levels were obtained from freely available electronic databases maintained and updated by established international organisations such asas the World Health Organisation (WHO), Food and Agriculture Organisation (FAO) and the World Bank. Data on diabetes prevalence and cholesterol concentrations were then matched to year- and country-specific food and energy availability for consumption and to year-specific information on physical inactivity, urbanisation, gross domestic product (GDP), life expectancy, and smoking. Cluster analysis was used to derive typical dietary patterns of global food consumption and their association with diabetes prevalence and total cholesterol levels was evaluated. Socio-demographic and dietary predictors of diabetes prevalence and total cholesterol levels were identified using multiple regression models. Physical inactivity and eggs consumption emerged as predictors of diabetes and total cholesterol levels in fully-adjusted multiple regression models, respectively. Three dietary patterns (agricultural, transitional and westernised) were identified by the cluster analysis. A significant increase in diabetes prevalence and total cholesterol levels was observed as countries move from an agricultural to a westernised dietary pattern. Prevention of physical inactivity is a global priority as closely linked to worldwide diabetes burden. The role of global consumption of eggs as a worldwide predictor of total cholesterol levels is a novel finding which requires further validation in epidemiological studies conducted in developed and developing countries

    Why do women invest in pre-pregnancy health and care? A qualitative investigation with women attending maternity services

    Get PDF
    Background Despite the importance attributed to good pre-pregnancy care and its potential to improve pregnancy and child health outcomes, relatively little is known about why women invest in pre-pregnancy health and care. We sought to gain insight into why women invested in pre-pregnancy health and care. Methods We carried out 20 qualitative in-depth interviews with pregnant or recently pregnant women who were drawn from a survey of antenatal clinic attendees in London, UK. Interviewees were purposively sampled to include high and low investors in pre-pregnancy health and care, with variation in age, partnership status, ethnicity and pre-existing medical conditions. Data analysis was conducted using the Framework method. Results We identified three groups in relation to pre-pregnancy health and care: 1) The “prepared” group, who had high levels of pregnancy planning and mostly positive attitudes to micronutrient supplementation outside of pregnancy, carried out pre-pregnancy activities such as taking folic acid and making changes to diet and lifestyle. 2) The “poor knowledge” group, who also had high levels of pregnancy planning, did not carry out pre-pregnancy activities and described themselves as having poor knowledge. Elsewhere in their interviews they expressed a strong dislike of micronutrient supplementation. 3) The “absent pre-pregnancy period” group, had the lowest levels of pregnancy planning and also expressed anti-supplement views. Even discussing the pre-pregnancy period with this group was difficult as responses to questions quickly shifted to focus on pregnancy itself. Knowledge of folic acid was poor in all groups. Conclusion Different pre-pregnancy care approaches are likely to be needed for each of the groups. Among the “prepared” group, who were proactive and receptive to health messages, greater availability of information and better response from health professionals could improve the range of pre-pregnancy activities carried out. Among the “poor knowledge” group, better response from health professionals might yield greater uptake of pre-pregnancy information. A different, general health strategy might be more appropriate for the “absent pre-pregnancy period” group. The fact that general attitudes to micronutrient supplementation were closely related to whether or not women invested in pre-pregnancy health and care was an unanticipated finding and warrants further investigation.This report is independent research commissioned and funded by the Department of Health Policy Research Programme Pre-Pregnancy Health and Care in England: Exploring Implementation and Public Health Impact, 006/0068

    Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in US facilities

    Get PDF
    Background Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 mu g/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. Results Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. Conclusion Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters

    Thermoregulation of foraging honeybees on flowering plants: seasonal variability and influence of radiative heat gain

    Get PDF
    1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated

    Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

    Get PDF
    Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations
    corecore